Hybridizing Light Aircraft

Presentation for 2nd Annual Electric Aircraft Symposium
San Francisco, CA
April 26, 2008

Ron Gremban, Technical Lead
The California Cars Initiative
rgremban@calcars.org
www.calcars.org
The reason cars are hybridized is to increase their fuel efficiency (and thereby reduce CO2 emissions).

Gasoline engines are VERY inefficient at low throttle settings; Diesels, somewhat less so.

What hybridization effectively does is bring average ICE efficiency up toward peak.

Why Hybridize Light Aircraft?

Improved fuel efficiency?

- The reason cars are hybridized is to increase their fuel efficiency (and thereby reduce CO2 emissions).
- Gasoline engines are VERY inefficient at low throttle settings; Diesels, somewhat less so.
- What hybridization effectively does is bring average ICE efficiency up toward peak.
Hybridizing Light Aircraft

<table>
<thead>
<tr>
<th>Effective ICE Efficiencies</th>
<th>Average auto</th>
<th>Hybrid auto (Prius)</th>
<th>Gasoline aircraft (Rotax 912S)</th>
<th>Diesel aircraft (DeltaHawk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak</td>
<td>30%</td>
<td>38% (Toyota’s number)</td>
<td>29% @ 0.43 lb/hp-hr</td>
<td>36% est.</td>
</tr>
<tr>
<td>Average (aircraft climb, cruise)</td>
<td>14% @ 25 mpg</td>
<td>25% @ 45 mpg</td>
<td>27% @ 0.45 lb/hp-hr</td>
<td>34% @ 0.35 lb/hp-hr</td>
</tr>
<tr>
<td>Ratio of average/peak</td>
<td>0.47:1</td>
<td>0.66:1</td>
<td>0.93:1</td>
<td>0.94:1</td>
</tr>
<tr>
<td>ICE improvement available</td>
<td>27%</td>
<td>0%</td>
<td>31%</td>
<td>25%</td>
</tr>
<tr>
<td>Hybridization improvement available</td>
<td>40%</td>
<td>0%</td>
<td>NONE</td>
<td>NONE</td>
</tr>
</tbody>
</table>

- Unlike cars, aircraft ICEs run at near peak efficiency most of the time.
- Therefore, hybridization can do little to improve piston aircraft fuel efficiency.
 - Note: turbines could be different, as they are incredibly inefficient at both low power settings and low aircraft speeds.

CalCars
THE CALIFORNIA CARS INITIATIVE

www.calcars.org
Hybridizing Light Aircraft

Other advantages to hybridizing a light aircraft

• Quiet electric operation around neighborhood airports
 – Via pure electric propulsion up to 3000’ AGL
 – After engine noise is eliminated, propeller noise is dominant. It too, can be greatly reduced.
 • Quiet propellers operate at much slower speeds than engines or electric motors
 • A PSRU, ideally a CVT, is needed to match optimum speeds

• Reliability of electric or dual power during the most dangerous time: takeoff

• Backup power always available in case of engine failure
 – Even when “fully” discharged, a last 20% of battery energy always available for emergency power at the cost of slightly shortened battery life

• Full takeoff power available at any altitude

• More benefits yet from strong (vs. mild) hybrids (discussed below)

• A pure electric airplane would need electric reserve, reducing already-very-limited endurance by 30 or 45 minutes
 – 1 hr no-reserve endurance may be maximum state-of-the-art with Li-ion
Hybridizing Light Aircraft

Basic calculations, conversions, and values used throughout

- 1 m = 3.28 ft
- 1 kWh = 1 joule (W-sec) * 3600 sec = 3600 joules = 3.6 Joules
- 1 hp = 550 ft-lb/sec = 746 W

\[
\begin{align*}
1 \text{ hp-hr} &= 0.746 \text{ kWh} = 550 \text{ ft-lb/sec} \times 3600 \text{ sec} = 1,980,000 \text{ ft-lb} \\
1 \text{ kWh} &= 1,980,000 \text{ ft-lb} / 0.746 = 2,654,000 \text{ ft-lb}
\end{align*}
\]

Therefore, from basic physics, the energy required to lift an airplane is:

- 1,000,000 ft-lb (1000 lb elevated by 1000’ or 455 kg by 305m) = 1/2.654 kWh = 0.377 kWh

If done via a 90% efficient electric motor/controller driving a 75% efficient propeller:

- **1000 lb elevated by 1000’ requires** 0.377/(.9 * .75) = 0.56 kWh of electricity

- Gasoline averages 131 MJ/gallon = 36.4 kWh/gal and 6.0 lb/gal
- Diesel averages 145 MJ/gallon = 40.4 kWh/gal and 6.6 lb/gal

CalCars
THE CALIFORNIA CARS INITIATIVE
www.calcars.org
Estimated LSA energy requirements

(more depth & accuracy by other speakers, but needed here to evaluate hybrid configurations)

<table>
<thead>
<tr>
<th>LSA (e.g. AGA Lafayette 3)</th>
<th>Scaled to 1320 lb/600 kg gross (max. LSA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty wt w/912</td>
<td>N/A</td>
</tr>
<tr>
<td>Empty wt w/o ICE</td>
<td>435 lb / 198 kg</td>
</tr>
<tr>
<td>Req’d payload</td>
<td>500 lb / 227 kg</td>
</tr>
<tr>
<td>Avail. for propulsion</td>
<td></td>
</tr>
<tr>
<td>Rotax 912 (60 kW / 80 hp)</td>
<td></td>
</tr>
<tr>
<td>Vs</td>
<td>121 lb / 55 kg</td>
</tr>
<tr>
<td>Vapproach</td>
<td>56 mph</td>
</tr>
<tr>
<td>Max. L/D ratio, incl. unfeathered prop. drag*</td>
<td>80-85 mph</td>
</tr>
<tr>
<td>Est. Vglide = speed at max L/D</td>
<td>85 mph / 136 kph = 7480 ft/min</td>
</tr>
<tr>
<td>Vglide sink rate</td>
<td>453 ft/min</td>
</tr>
<tr>
<td>Energy loss at Vglide</td>
<td></td>
</tr>
<tr>
<td>Note: unfeathered propeller drag is estimated to approximately match propeller inefficiency during cruise. Therefore propeller inefficiency will be ignored for cruise energy calculations.</td>
<td>Vglide energy loss</td>
</tr>
<tr>
<td>Shaft energy/distance</td>
<td>159 Wh/mi = 99 Wh/km</td>
</tr>
<tr>
<td>Fuel@Vglide (at sea level)</td>
<td>8.16 lb/hr = 1.36 gph</td>
</tr>
<tr>
<td>Gasoline mileage</td>
<td>63 mpg</td>
</tr>
<tr>
<td>Electric cruise w/90% eff. motor/controller</td>
<td>15.0 kW @ 85 mph / 136 kph</td>
</tr>
<tr>
<td>Electric energy per distance</td>
<td>176 Wh/mi = 110 Wh/km</td>
</tr>
<tr>
<td>30 min (42 mi) VFR reserve</td>
<td>7.5 kWh (to 100% DOD)</td>
</tr>
<tr>
<td>1000’ (305m) electric climb, incl. cruise energy</td>
<td>0.74 + 0.26 kWh = 1.0 kWh</td>
</tr>
<tr>
<td>Electric climb, 1000’/min, incl. cruise energy</td>
<td>44.4 + 15 kW = 60 kW = 80 hp</td>
</tr>
<tr>
<td>Electric go-around (est. 10 mi)</td>
<td>1.6 + 0.9 = 2.5 kWh</td>
</tr>
</tbody>
</table>
Hybridizing Light Aircraft

Possible hybrid LSA components

(more depth & accuracy by other speakers, but needed here to evaluate hybrid configurations)

<table>
<thead>
<tr>
<th>Component</th>
<th>Specific power</th>
<th>Specific energy</th>
<th>Efficiency</th>
<th>Estimated Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline engine (e.g. Rotax 912S)</td>
<td>1.15 kW/kg</td>
<td>N/A</td>
<td>27% (0.45 lb/hp-hr)</td>
<td>$500/kW</td>
</tr>
<tr>
<td>Gasoline</td>
<td>N/A</td>
<td>13.3 kWh/kg (3.60 Wh/kg after 27% ICE efficiency)</td>
<td>Price @ 27% => $0.51/kWh @ $5.00/gal</td>
<td></td>
</tr>
<tr>
<td>Diesel engine (e.g. DeltaHawk DH200V4)</td>
<td>0.84 kW/kg</td>
<td>N/A</td>
<td>34% (0.35 lb/hp-hr; 26% better than gasoline)</td>
<td>$500/kW</td>
</tr>
<tr>
<td>Diesel (& bio-)</td>
<td>N/A</td>
<td>13.5 Wh/kg (4.6 Wh/kg after 34% ICE efficiency)</td>
<td>Price @ 34% => $0.36/kWh @ $5.00/gal</td>
<td></td>
</tr>
<tr>
<td>Electric motor/ generator (AC brushless)</td>
<td>3 kW/kg est.</td>
<td>N/A</td>
<td>95%</td>
<td>$100/kW</td>
</tr>
<tr>
<td>Electronics</td>
<td>6 kW/kg est.</td>
<td>N/A</td>
<td>95%</td>
<td>$100/kW</td>
</tr>
<tr>
<td>Electricity</td>
<td>N/A</td>
<td>N/A</td>
<td>@ 70% from grid</td>
<td>$0.17/kWh @ $0.12/kW</td>
</tr>
<tr>
<td>Li-ion power battery</td>
<td>2.5 kW/kg (~30C or 2 min rate)</td>
<td>97 Wh/kg; 78 Wh/kg to 80% DOD</td>
<td>80-90%</td>
<td>$1500/kWh; $60+/kW</td>
</tr>
<tr>
<td>Li-ion energy battery</td>
<td>1.0 kW/kg (est. 5C or 12 min rate)</td>
<td>168 Wh/kg; 135 Wh/kg to 80% DOD</td>
<td>90-95%</td>
<td>1200/kWh; $240/kW</td>
</tr>
<tr>
<td>Supercapacitor (Maxwell BMOD0165)</td>
<td>7.9 kW/kg (~2000C or 2 sec rate!)</td>
<td>3.8 Wh/kg</td>
<td>95-99%</td>
<td>$148/kg => $39,000/kWh; $18.7/kW</td>
</tr>
<tr>
<td>Pie-in-the-sky ultracapacitor</td>
<td>2.8 kW/kg (10C or 6 min rate)</td>
<td>278 Wh/kg; 250 Wh/kg to 33% voltage</td>
<td>95-99%</td>
<td>$61/kWh; $6/kW</td>
</tr>
</tbody>
</table>

* 336 lb (152 kg), 2005 cu.in. (33 L), 52 kWh (187 MJ), 31 Farad, 3500V
Hybridizing Light Aircraft

Mild hybridization: 3 kWh usable electric storage (0.3 gal/ 0.8 kg of gas equiv)

- **Propulsion system**
 - Electric system & ICE each rated for full climb power: 60 kW
 - 55 kg, $30k, 60 kW/ 80 hp ICE (e.g. Rotax 912)
 - ~68 kg, $16.5k hybrid components
 - ~38 kg, $4.5k, battery pack using A123 cells
 - ~30 kg, $12k, motor/controller
 - ~123 kg, 52 kg below max; room for gasoline & instruments
 - **Hybridization added ~68 kg (11% of LSA weight), $16.5k**

- **Capabilities/Regimes:** EV take-off and climb to 3000’ AGL, then
 - ICE takes over
 - Battery should automatically recharge from ICE immediately upon cruise or cruise-climb
 - Full charge provides energy for one EV go-around
 - Full charge can occur in 4 min during cruise
 - Touch-and-goes require ICE operation in pattern
 - Recharge from ICE can provide for EV climb
 - Emergency power: normally-unused last 20% of battery
 - 0.6 kWh, enough for 600’ climb or 3.5 mi cruise
Hybridizing Light Aircraft

Strong hybridization: 10.3 kWh usable electric storage (1.0 gal/ 2.9 kg of gas equiv)

• Propulsion system
 – Electric system rated for full climb power: 60 kW/ 80 hp
 • ~106 kg, $24.3k hybrid components
 – 76 kg, $12.3k actual Electrovaya battery (8 modules)
 – ~30 kg, $12k motor/controller
 – ICE rated to supply cruise power plus charging
 – 13.5 + 6.5 kW charging = 20 kW
 » 13.5 kW @ 10,000’ (no charging)
 – ~17 kg, $10k (-35 kg, -$20k vs. 3 kWh hybrid)
 – Can provide enough charge for go-arounds
 » 1 pure electric go-around after each 30 min
 » Continuous ICE-assisted go-arounds
 – ~126 kg, 49 kg below max; room for gas & instruments
 • Hybridization added ~71 kg (12% of LSA weight), $4.3k
Strong hybridization: 10.3 kWh usable electric storage (continued)

- **Capabilities/Regimes:** EV take-off and climb to 3000’ AGL, then
 - If ICE unused and battery grid-charged (**PHEV airplane!**)
 - EV climb to 10,000’ AGL (10 min/ 8.5 mi) —or—
 - 50+ mi (35 min) EV range
 - no wind, to same altitude airport
 - 1 gal unused gas provides 45-min reserve
 - Short trips can be purely electric!
 - $1.75 vs. $4.00 for fuel

 - If ICE used
 - 3 pure EV go-arounds available w/o recharge (4 with recharge)
 - ICE can charge battery as desired during cruise
 - Fast enough for continuous go-arounds
 - 30 min to full after initial electric 3000’
 - 100 minutes to full from empty
 - 10 gal gas provides 600+ mi range beyond EV

 - ICE operation in pattern required for >3 touch-and-goes
 - Emergency power: normally-unused last 20% of battery
 - 2 kWh, enough for 2000’ climb, 11 mi cruise, or abbreviated go-around
Hybrid Architectures

<table>
<thead>
<tr>
<th>Description</th>
<th>Power-split or Series/Parallel (like Toyota HSD)</th>
<th>Series (like Chevy Volt)</th>
<th>Parallel (like Honda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>A planetary gear system connects the ICE, motor/gen, and a 2nd motor/gen used to regulate EV/ICE speeds & power split.</td>
<td>An electric motor drives the prop. The ICE only charges the battery via a separate generator.</td>
<td>The ICE and motor are both attached to the prop. A clutch may be provided to allow the ICE to stop.</td>
</tr>
<tr>
<td>ICE power xfer efficiency</td>
<td>80%</td>
<td>85%</td>
<td>100%</td>
</tr>
<tr>
<td>Extra weight (other than battery)</td>
<td>2 motor/generators + planetary gear</td>
<td>1 motor + 1 generator</td>
<td>1 motor/generator</td>
</tr>
<tr>
<td>Issues</td>
<td>ICE efficiency too low</td>
<td>ICE efficiency too low</td>
<td>Best for airplanes. (see next slide)</td>
</tr>
</tbody>
</table>
Hybridizing Light Aircraft

Parallel Hybrid Architectures

<table>
<thead>
<tr>
<th>Parallel Hybrid Architectures</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>No clutch</td>
<td>Fewer components and stress, ICE reliability from always spinning</td>
<td>Inefficiency & wear of ICE spinning on electric power. Power failure if ICE seizes.</td>
<td>Inefficiency of e.g. 10% if valves are opened may be worth it for mild hybrid.</td>
</tr>
<tr>
<td>Clutch (optimum for strong hybrids)</td>
<td>Efficiency & reliability from ICE not spinning during electric-only power. Power available even if ICE seizes.</td>
<td>Possible unreliability & added strains from inflight engine starts</td>
<td>Added stress & failure modes worthwhile only for strong hybrid</td>
</tr>
<tr>
<td>No PSRU</td>
<td>Simple, reliable</td>
<td>Engine & motor speed too fast for quiet prop (e.g. 2700 vs. 1000 rpm) & must be too slow for weight minimization</td>
<td>Possible only if using heavier low-speed electric ‘hub’ motor, and if prop speed is higher during ICE operation.</td>
</tr>
<tr>
<td>Fixed PSRU (desirable if reliable)</td>
<td>Allows static speed optimization for ICE or for motor; ICE & motor can be smaller and lighter</td>
<td>PSRU reliability is often lower than that of ICE, let alone electric motor</td>
<td>Basically necessary to reduce ICE & motor weight for 1000 rpm prop</td>
</tr>
<tr>
<td>CVT PSRU (optimum if reliable)</td>
<td>Allows dynamic ICE and motor speed optimization otherwise unavailable for LSA aircraft that can’t have variable-pitch props.</td>
<td>Dr. Andy Frank has best known implementation, but untested reliability in aircraft</td>
<td>Could allow use of a high-speed ICE & even higher speed electric motor (especially when combined with a clutch) for minimum weight and loses.</td>
</tr>
</tbody>
</table>
Conclusions

• Aircraft hybridization is valuable for very different reasons than for autos
 – Quiet and reliability, not increased ICE efficiency
 – Modern technology, though, could improve ICE efficiency by ~25%
• Hybridization, mild or strong, adds around 11% to the weight of an LSA
• For aircraft, parallel hybridization is optimum
 – A PSRU and clutch are highly desirable
 – If proven reliable, a CVT PSRU can provide significant advantages
• Strong hybridization (vs. mild, capable only of EV climb to 3000’)
 – Due to ICE downsizing and lower battery power requirements
 • Adds about the same weight, ~11%, to an LSA
 • Adds 1/4 the cost: $4.3k vs. $16.5k
 – Adds significant safety and mission capabilities
 – If grid-charged, becomes a PHEV, allowing 50 mi pure EV trips!
 • An automatic advantage of strong hybridization!
 • Quiet, 1/3 fuel cost, much lower CO2 and criteria emissions!
 – No smog controls yet on aviation engines
 • Vs. a pure electric airplane
 – The ICE + 1 gal of gas provides the required 30-min reserve, doubling the effective EV range
 vs. replacing the ICE with an equivalent weight of batteries
 – Longer distance trips can be flown using gasoline

• PHEVs rule, for airplanes as well as for automobiles!