Are Practical Electric and Hybrid Airplanes Just Around the Corner?

(what I added to my model early this morning surprised me when I awoke)

Presentation for 3rd Annual Electric Aircraft Symposium
San Carlos, CA
April 24, 2009

Ron Gremban, Technical Lead
The California Cars Initiative
rgremban@calcars.org
www.calcars.org
Are Practical Electric and Hybrid Airplanes Just Around the Corner?

Change of Title and Focus

• I delayed writing this talk until yesterday, as Aviation Green Prize rules were continuing to change
 – Conversion factor changed from 50 kWh/gallon to 33.7 kWh/gallon, making electricity’s mpge less advantageous
 – The race has been delayed from Sept 2010 to June 2011
 • Better batteries should be available, making electric range -- which is what my modeling focused on -- much easier
 – Instead of pure speed, the race formula is now 1/(2/passenger-mpge + 1/mph)
 • Strongly biased toward fuel efficiency, since drag increases as the cube of speed
 – This is true during the design process even if not at best glide speed
 • I believe the winner will
 – Fly an LSA-sized airframe at just above 100 mph
 – By powered by a high-efficiency turbo-Diesel engine
 » Diesel engine exhaust has especially toxic emissions that are difficult to clean up
 – Employ a glider-like long-wing design
 – The electric airplanes I modeled, though quiet, fuel efficient, and low carbon, will no longer meet the AGP’s minimum mpge.
Are Practical Electric and Hybrid Airplanes Just Around the Corner?

There are good reasons for electric airplanes ASAP

• **Cost**
 – At the shaft, electricity is less than 1/5 the cost avgas
 – Though batteries are hugely expensive, so are the aircraft engines they can replace

• **Noise – an increasing problem at GA airports**

• **Aircraft engines pollute**
 – Aircraft piston engines have not been cleaned up at all. In contrast, new auto engines are around 200x cleaner than before, making each piston aircraft a ‘gross polluter’ in comparison
 – 100LL is now actually on its way out, due to airborne lead near GA airports
 – Particulates, hydrocarbons, oxides of nitrogen, etc, must eventually be regulated
 – Studies show that electric power is cleaner than the best of today’s auto engines

• **Electric airplanes will immediately be lower carbon**
 – Because 2-3 times as efficient as ICE
 – Average U.S. electricity now higher CO2 per kWh than gasoline, but not for long
 • CA already twice as low
 • Many states have renewable portfolio standards – soon the U.S?
 – Plenty of electric capacity available
 – Hangars could be covered with solar panels
 – Low carbon biofuels will have limited availability for the foreseeable future

• **Reliability – potentially much higher, though not yet proven**
 – Potential to be safer than twins, which don’t actually have a better engine-out safety record than singles (due to loss of control from sudden off-axis thrust)
Are Practical Electric and Hybrid Airplanes Just Around the Corner?

What minimum performance is needed for a practical electric airplane?

- My guesses as a GA pilot & former C-172 owner
 - For some, not all pilots
 - Not what’s competitive without fuel & environment considerations
 - Endurance bladder-limited to 3 hours anyway
 - Cruise speed and endurance rated at sea level (SL)
 - Endurance rated at the same cruise speed
 - Refueling will depend upon
 - As-yet-nonexistent charge stations, or
 - A high-power electrical outlet available via pre-arrangement
Are Practical Electric and Hybrid Airplanes Just Around the Corner?

Recreational Flying

- **Local flying – near C-150 or LSA performance**
 - 1-2-place, 200 lb/person (200-400 lb) payload (no baggage)
 - 100 mph/87 kt cruise, 8k ft ceiling
 - 1.5 hours endurance at cruise + VFR reserve
 - Overnight refueling, except <1 hr for rentals

- **Day trips – near C-172 or LSA performance**
 - 2-4-place, 225 lb/person (450-900 lb) payload
 - 100+ kt cruise, 10k+ ceiling (12k+ in the West)
 - 2-3 hours endurance (230-345 mi) + VFR or IFR reserve
 - 4 hours maximum to refuel

- **Long distance cross-country flying – C-172++**
 - 2-4-place, 250 lb/person payload (500-1000 lb)
 - 100-200 kt cruise, 12k+ ceiling
 - 2.5-3 hours endurance (288-690 mi) + VFR or IFR reserve
 - 1 hour max to refuel (time for a meal)
Are Practical Electric and Hybrid Airplanes Just Around the Corner?

• **Business Travel**
 - Single-person travel, a stop after each leg
 - Like recreational day trips, except
 - 1-place, 250-500 lb payload (may include equipment)
 - 1-2 hours maximum refuel time due to multiple legs
 - More speed is highly desirable, as time is money
 - Carrying clients or associates, a stop after each leg
 - Like single-person business, except
 - 3-4-place, 250 lb/person (750-1000 lb) payload
 - Long distance cross-country flying
 - Like recreational, except IFR reserve and 150+ kt cruise

• **Commuting**
 - 1-2-place, 225 lb/person payload (225-450 lb), 100-150 kt cruise
 - 2-2.5 hours (more is too long a commute) at cruise (230-375 mi) + IFR reserve
 - 6-8 hours to refuel during work

CalCars
THE CALIFORNIA CARS INITIATIVE
Are Practical Electric and Hybrid Airplanes Just Around the Corner?

What can hybridizing an airplane accomplish?

• **Suggested/modeled hybrid**
 – Parallel, powered by the electric motor and/or the engine
 – Motor always turns, direct or via a PSRU
 – Engine, attached via a centrifugal clutch, can start & stop
 – Enough electric energy to climb to e.g. 10k ft
 • Ground (PHEV) charging enables some fuel displacement
 – A reversing propeller can capture energy during descents

• **Quiet airport operations**
 – Except when full power needed for short field or high altitude takeoffs

• **Smaller, lighter, efficient Diesel engine**
 – Sized only for cruise power (especially DeltaHawk)
 – Higher efficiency also means less weight for fuel

• **Some electric energy is always held in reserve for an emergency**
 – For long life, normal discharge is by only 80%
 – Fewer engine-failure-induced fatal crashes
 – Electric power is more reliable, and dual-power is more reliable yet
Are Practical Electric and Hybrid Airplanes Just Around the Corner?

My modeling (live spreadsheet to follow)

• For both electric and hybrid, I started with the fastest 4-place piston kit airframes
 – Kit airplanes get registered as amateur-built experimental
 • Modifiable and can be flown most anywhere
 – Must be efficient to be fast
 – Maximum L/D occurs at usefully fast speeds
 – 2 places and associated payload can be sacrificed for sufficient range with today’s batteries
 – As batteries improve, will the airframe remain near optimum for increasing either…
 • Cruise speed and range, or
 • Payload?
Are Practical Electric and Hybrid Airplanes Just Around the Corner?

Worksheet for possible electric aircraft to enter the NASA/CAFE high-efficiency 2-place airplane contest

<table>
<thead>
<tr>
<th>Aircraft characteristics</th>
<th>Velocity XL-RQ</th>
<th>Velocity XL-RG</th>
<th>Velocity Hybrid</th>
<th>Lancair IV</th>
<th>Lancair IV Electric</th>
<th>Lancair IV Electric, actuator for slowed flight</th>
<th>Van's RV-10</th>
<th>Van's RV-10 Hybrid</th>
<th>Van's RV-10 Electric, optimized for slowed flight</th>
<th>Van's RV-10 Electric, optimized for slowed flight</th>
<th>Piplasted Slices</th>
<th>Piplasted Slices</th>
<th>Piplasted Slices</th>
<th>Piplasted Slices</th>
<th>Cessna C-172M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Weight (Cafeman) Lb</td>
<td>2,390</td>
<td>3,000</td>
<td>3,590</td>
<td>3,590</td>
<td>3,590</td>
<td>3,590</td>
<td>3,590</td>
<td>3,590</td>
<td>3,590</td>
<td>3,590</td>
<td>3,590</td>
<td>2,700</td>
<td>2,700</td>
<td>2,700</td>
<td>2,700</td>
<td>1,250</td>
<td>1,250</td>
<td>1,250</td>
<td>1,250</td>
<td>1,250</td>
</tr>
<tr>
<td>2) Gross weight Lb</td>
<td>168</td>
<td>168</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>1900</td>
<td>168</td>
<td>168</td>
<td>168</td>
<td>168</td>
<td>168</td>
<td>168</td>
<td>168</td>
<td>168</td>
<td>168</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>3) Projected battery cost</td>
<td>Today</td>
<td>Today</td>
<td>>2012</td>
<td>>2012</td>
<td>>2012</td>
<td>>2012</td>
<td>>2012</td>
<td>>2012</td>
<td>>2012</td>
<td>>2012</td>
<td>>2012</td>
<td>179,920</td>
<td>179,920</td>
<td>179,920</td>
<td>179,920</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
</tr>
<tr>
<td>4) Battery capacity LkWh</td>
<td>0</td>
</tr>
<tr>
<td>5) Batt. weight Lb</td>
<td>0</td>
</tr>
<tr>
<td>6) Operating cost</td>
<td>780</td>
<td>784</td>
<td>1,010</td>
<td>554</td>
<td>554</td>
<td>476</td>
<td>476</td>
<td>1,020</td>
<td>1,020</td>
<td>1,020</td>
<td>1,020</td>
<td>482</td>
<td>482</td>
<td>482</td>
<td>482</td>
<td>574</td>
<td>574</td>
<td>574</td>
<td>574</td>
<td>574</td>
</tr>
<tr>
<td>7) Seats</td>
<td>4</td>
</tr>
<tr>
<td>10) Cruise (max range)</td>
<td>120</td>
<td>120</td>
<td>180</td>
<td>120</td>
<td>120</td>
<td>230</td>
<td>120</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>120</td>
<td>120</td>
<td>230</td>
<td>230</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>11) Endurance, hr</td>
<td>4.1</td>
</tr>
<tr>
<td>12) Speed (mph)</td>
<td>269</td>
</tr>
<tr>
<td>13) Effective L/D</td>
<td>7.9</td>
<td>5.6</td>
</tr>
<tr>
<td>14) Climb to 3,000 ft</td>
<td>6.5</td>
</tr>
<tr>
<td>15) Takeoff distance (ft)</td>
<td>115</td>
<td>115</td>
<td>144</td>
<td>120</td>
<td>120</td>
<td>144</td>
<td>120</td>
<td>120</td>
<td>144</td>
<td>120</td>
</tr>
<tr>
<td>16) Top speed (mph)</td>
<td>269</td>
</tr>
<tr>
<td>17) Range (no. of miles)</td>
<td>12</td>
</tr>
<tr>
<td>18) Climb to 3,000 ft</td>
<td>115</td>
<td>115</td>
<td>144</td>
<td>120</td>
<td>120</td>
<td>144</td>
<td>120</td>
<td>120</td>
<td>144</td>
<td>120</td>
</tr>
<tr>
<td>19) Takeoff distance (ft)</td>
<td>115</td>
<td>115</td>
<td>144</td>
<td>120</td>
<td>120</td>
<td>144</td>
<td>120</td>
<td>120</td>
<td>144</td>
<td>120</td>
</tr>
</tbody>
</table>

CalCars: The California Cars Initiative